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The Problem Setup

In a multiple testing problem, we observe a data set X ∼ P and reject a
subset of hypotheses H1, . . . ,Hm.
Assuming P ∈P, each hypothesis Hi ⊊ P represents a submodel;
WLOG, the i th alternative hypothesis is P\Hi .
We assume that the computed p-value pi(X ) to test each Hi is marginally
super-uniform under Hi .
Let H0(P) = {i : P ∈Hi} denote the set of true null hypotheses and
define m0 = |H0|.
Multiple testing procedure is a decision R(X )⊆ [m] designating the set of
rejected hypotheses.
An analyst who rejects Hi for each i ∈R(X ) makes V = |R ∩H0| false
rejections (discoveries).
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FDP and FDR

Benjamini and Hochberg (1995) define False Discovery Proportion (FDP)
as

FDP(R(X );P) =
V

R∨1
The False Discovery Rate (FDR) is defined as expected FDP:

FDRP(R) = EP [FDP(R;X )]

A standard goal in multiple testing is to maximize the expected number of
rejections while controlling the FDR at a preset significance level α.
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Benjamini-Hochberg (BH) procedure

The most widely used method for FDR control is BH procedure, which is
an example of more general class step-up procedure.
For p(1) ≤ ·· · ≤ p(m), the step-up procedure for increasing sequence of
thresholds 0≤∆(1)≤ ·· · ≤∆(m)≤ 1 finds the largest index r for which
p(r) ≤∆(r) and rejects all Hi ∋ 1≤ i ≤ r .
Basically, we reject the hypotheses with the smallest R(X ) p-values
where R(X ) = max{r : p(r)(X )≤∆(r)}.
The BH procedure takes ∆α(r) = αr/m.
For general family of thresholds ∆α(r) that are non-decreasing in α and
r , we denote the generic step-up procedure as SU∆(α).
We denote the corresponding testing procedures as RBH(α) and RSU∆(α).
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FDR control issues I

Note:

FDR = E
[

V
R∨1

]
= ∑

i∈H0

E
[

Vi

R∨1

]
where Vi = 1{Hi is rejected}.
Benjamini and Hochberg (1995) proved that BH(α) procedure controls
FDR at exactly αm0/m if the p-values are independent and each term of
the above sum is controlled at α/m.
Benjamini and Yekutieli (2001) showed that BH(α) procedure controls
FDR conservatively at αm0/m provided p−1 = (p1, . . . ,pi−1,pi+1, . . . ,pm)
is Positive Regression Dependent (PRD) on pi , for every i ∈H0: this
condition being called Positive Regression Dependence on a Subset
(PRDS).
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FDR control issues II

Benjamini and Yekutieli (2001) also showed that under arbitrary
dependence structure of p-values, a much more conservative BH(α/Lm)
controls FDR at level α, where Lm = ∑

m
i=1 i−1 = logm+O(1). This method

is called the Benjamini-Yekutieli (BY) procedure.
It has also been shown that a general SU procedure with
∆α(r) = αβ (r)/m where β (r) = ∑

r
i=1 iν(i) with ν being a probability

measure on {1, . . . ,m}, controls FDR conservatively under arbitrary
dependence between p-values.
These methods control FDR under worse-case dependence
assumptions, but their generality comes at a price of substantial
conservatism and diminished power compared to BH procedure.
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Conditional Calibration I

This paper introduces a method to adaptively calibrate separate rejection
threshold for each p-value to control each term of FDR sum, which we
call FDR contribution of Hi .
Let τi(c;X ) be rejection threshold for pi , with calibration paramater c ≥ 0.
We will aim to calibrate the threshold for pi , choosing ĉi to directly control
the i th term of the sum

EHi

[
Vi

R∨1

]
= sup

P∈Hi

EP

[
1{pi ≤ τi(ĉi)}

R∨1

]
≤ α

m

We try to control a more tractable conditional expectation to free the
calculation from nuisance parameters, given some conditioning statistic
Si .
Only requirement of Si :

sup
P∈Hi

PP(pi ≤ α|Si)≤ α a.s. ∀α ∈ [0,1]
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Conditional Calibration II

Under independence the super-uniformity condition holds for Si = p−i .

Lemma
Let p(i←0) = (p1, . . . ,pi−1,0,pi+1, . . . ,pm). If R is a step-up procedure with
threshold sequence ∆(1), . . . ,∆(m), then the following are equivalent:

1 pi ≤∆(R(p(i←0)),
2 i ∈R(p),
3 R(p) = R(p(i←0)).

Let R0 = R(p(i←0)), which only depends on p−i . Then for standard BH
procedure under independence,

EHi

[
Vi

R∨1
|p−i

]
= EHi

[
1{pi ≤ αR0/m}

R0 |p−i

]
≤ 1

R0
αR0

m
=

α

m

Marginalizing over p−i and summing over i ∈H0 yields FDR ≤ αm0/m.
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Conditional Calibration III

The number of rejections R also depend on all ĉ1, . . . , ĉm. We substitute
an estimatior R̂i ≥ 1 for eventual value of |R(X )∪{i}|.
Note that R̂i should be lower bound for R, so that Vi/R̂i is a good upper
bound for Vi/(R∨1).
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Step 1: Calibration

We use R̂i to estimate EHi [Vi/(R∨1)|Si ] as a function of the calibration
parameter c, which we call to be valid if:

g∗i (c;Si) = sup
P∈Hi

EP

[
1{pi ≤ τi(c)}

R̂i
|Si

]
≤ α

m

We choose c∗i (Si) = sup{c ≥ 0;g∗i (c;Si)≤ α/m}.
g∗i (c;Si) is non-decreasing and any c < c∗i is valid. However, if g∗i is
discontinuous, c∗i itself may not be valid.
We consider a sequence {ĉ∗i ,t}t ∋ ĉi ,t ↑ ĉ∗i and say the ĉ∗i is maximal if
∪t [0, ĉi ,t ] includes every valid c, almost surely.
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Step 2: Initial rejection

We now initialize the rejection set via:

R+ = {i : pi ≤ τi(ĉi)}

In practice instead of calculating ĉi , we use q−values
qi(X ) = min{c : pi ≤ τi(c)} since they are easy to calculate for SU
procedures.
For the maximal ĉi , i ∈R+ iff the observed qi is a valid calibration
parameter, so we alternatively write,

R+ = {i : g∗i (qi ;Si)≤ α/m}

Let R+ = |R+|. If R+ ≥ R̂i , ∀ i ∈R+, we set R = R+. Otherwise, we
prune the rejection set further.
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Step 3: Randomized Pruning

If there is some i ∈R+ for which R̂i > R+, then we must prune the
rejection set via a secondary BH procedure.

For use generated random variables u1, . . . ,um
i .i .d .∼ Unif (0,1), let,

R(X ;u) = max{r : |{i ∈R+ : ui ≤ r/R̂i}| ≥ r}

and reject Hi for the R indices with i ∈R+ and ui ≤ R/R̂i .
This procedure is equivalent to BH(1) procedure on “p-value”
p̃i = ui R̂i/R+ for i ∈R+.
While this pruning step introduces extra randomness, the rejection set
includes {i : R̂i ≤ R(X ;1n)} almost surely.
We call a calibrated procedure safe is pruning is never necessary.

Theorem
Assuming conditional superuniformity of p-values and that ĉi is chosen to
guarantee term-wise FDR control ∀i , the three step procedure controls FDR
at or below level αm0/m.
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The dependence-adjusted BH and BY procedures

If we use the effective threshold τi = τBH and the estimator
R̂i = |RBH(γα)∪{i}|, we call the method dependence-adjusted BH
procedure and denote it using dBH(γα).
If γ = 1/Lm, we denote it by dBY (α)
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dBH1(α) and dBY (α) procedure

Definition: For given conditioning statistic Si , we say p−i is conditionally
positive regression dependent (CRPD) if P(p−i ∈ A|pi ,Si) is a.s.
non-decreasing in pi for any increasing set A. If p−i is CPRD on
pi ∀i ∈H0, we say p-values are CPRD on subset (CPRDS).

Theorem
Assume ĉ1, . . . , ĉm are maximal, then:

1 If the p-values are independent with pi uniform under Hi , then dBH1(α)
procedure with Si = p−i is identical to BH(α) procedure.

2 If the p-values are CPRDS ∀ P ∈P, then BH1(α) procedure is safe and
uniformly more powerful than the BH(α) procedure.

3 For arbitrary dependence, the dBY (α) procedure is safe, and uniformly
more powerful than the BY (α) procedure.

4 Recall the thresholds ∆α for generic SU procedure, then for arbitrary
dependence, the dSU∆(α) procedure is safe, and uniformly more
powerful than the SU∆(α) procedure.
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Identifying conditioning statistic Si

To facilitate calibration, Si should eliminate or mitigate the influence of
nuisance parameters on the conditional distribution of X .
Calibration is conceptually simplified if Si is a sufficient statistic for the
null submodel Hi , so that conditional distribution of X is known under Hi ,
in which case we call Hi to be conditionally simple. Otherwise, we call it
conditionally composite and P∗i is least favorable for calibrating ĉi if it
almost surely attains the supremum g∗i (ci ;Si).
Example: For full ranked exponential family,

X ∼ fθ (x) = eθ ′T (x)−A(θ)f0(x), θ ∈Θ⊂ Rd

For i = 1, . . . ,m ≤ d , Hi takes form Hi : θi = 0 or Hi : θ ≤ 0. The UMPU test
rejects Hi when Ti(X ) is extreme, conditional on the value of Si = T−i .
For one sided testing, Hi : θi ≤ 0 is conditionally composite and it turns
our that under some mild condition, θi = 0 is least favorable.
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Recursive refinement of R̂i

Performing Steps 1 and 2 our method will make us estimate the rejection
rejections once for all the m p-values and hence changing (R̂1, . . . , R̂m) will
affect the entire procedure and change R in turn. We however use a better
procedure called recursive refinement of the estimator.

Denote the original estimator as R̂(1)
i , which leads to original calibration

parameter, ĉ(1)
i and initial rejection set R

(1)
+ .

We define the recursively refined estimator as:

R̂(k+1)
i = |R(k)

+ (x)∪{i}|, k > 1

If we use effective BH threshold with the dBHγ(α) estimator, we call the
resulting procedure dBH2

γ (α) procedure, or dBY 2(α) if γ = 1/Lm.

Theorem
Assume ĉ(k)

1 , . . . , ĉ(k)
m are maximal ∀i , k. If R(1) is safe, then for every k ≥ 1,

R(k+1) is safe and uniformly more powerful than R(k).
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Multivariate z-statistics

Assume Z ∼ Nd (µ,Σ) with Σ≻ 0 and all Σi ,i = 1 and we wish to test
Hi : µi = 0 or Hi : µ ≤ 0 for i = 1, . . . ,m ≤ d . pi are the standard one- or
two-sided p-values based on Zi . Now,

fµ(z) =
1

(2π)d/2|Σ|1/2 exp

{
µ
′Σ−1z− 1

2
z ′Σ−1z− 1

2
µ
′Σ−1

µ

}
It can be shown that taking Si = z−i −Σ−i ,iΣ

−1
i ,i zi , eliminates the influence of

µ−i from the problem, leaving a one-parameter exponential family model in µi
with Zi as sufficient statistic.
To carry out dBHγ(α) procedure, we plug in c = qi(Z ) in

E0

[
1{qi ≤ c}

|RBH(γα)∪{i}|
Si

]
≤ α

m

The expectation is now easy to calculate since given Si , we simply integrate
with respect to Zi ∼ N(0,1).
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Multivariate t-statistics

In the previous problem, we now assume that Σ= σ2Ψ where Ψ≻ 0 is known
but σ2 > 0 is unknown. WLOG, assume Ψi ,i = 1. To estimate σ2, we observe
another independent vector W ∼ Nn−d (0,σ2In−d ).
As before, we test Hi : µ = 0 or Hi : µi ≤ 0 for i = 1, . . . ,m ≤ d , the usual test
statistic is

Ti =
Zi

σ̂
where (n−d)σ̂2 = ||W ||2 ∼ σ

2
χ

2
n−d

It can be shown that conditioning the resulting (d +1)-parameter exponential

family on Si =
(

z−i −Ψ−i ,iΨ
−1
i ,i zi ,

√
||W ||2 +Z 2

i

)
yields a one-parameter

exponential family with parameter µi/σ2.

Therefore, solving the expectation to control the contribution to FDR boils
down to a simple integration w.r.t. Ti ∼ tn−d .
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