Conditional Calibration For False Discovery Rate Control Under Dependence¹

William Fithian and Lihua Lei

Shubha Sankar Banerjee

Department of Statistics University of Pittsburgh

December 19, 2023

¹Main Reference: Fithian and Lei (2022)

Review of FDR control

- Issues with FDR control under different setups
- FDR control by conditional calibration: Strategy
- 4 FDR control by conditional calibration: Method
- 5 Example

- In a multiple testing problem, we observe a data set X ~ P and reject a subset of hypotheses H₁,..., H_m.
- Assuming *P* ∈ 𝒫, each hypothesis *H_i* ⊆ 𝒫 represents a submodel; WLOG, the *ith* alternative hypothesis is 𝒫*H_i*.
- We assume that the computed p-value p_i(X) to test each H_i is marginally super-uniform under H_i.
- Let ℋ₀(P) = {i : P ∈ ℋ_i} denote the set of true null hypotheses and define m₀ = |ℋ₀|.
- Multiple testing procedure is a decision *R*(X) ⊆ [m] designating the set of rejected hypotheses.
- An analyst who rejects H_i for each i ∈ R(X) makes V = |R ∩ H₀| false rejections (discoveries).

 Benjamini and Hochberg (1995) define False Discovery Proportion (FDP) as

$$FDP(\mathscr{R}(X); P) = rac{V}{R \lor 1}$$

• The False Discovery Rate (FDR) is defined as expected FDP:

$$FDR_{P}(\mathscr{R}) = \mathbb{E}_{P}[FDP(\mathscr{R}; X)]$$

• A standard goal in multiple testing is to maximize the expected number of rejections while controlling the FDR at a preset significance level *α*.

Benjamini-Hochberg (BH) procedure

- The most widely used method for FDR control is BH procedure, which is an example of more general class step-up procedure.
- For p₍₁₎ ≤ ··· ≤ p_(m), the step-up procedure for increasing sequence of thresholds 0 ≤ Δ(1) ≤ ··· ≤ Δ(m) ≤ 1 finds the largest index *r* for which p_(r) ≤ Δ(r) and rejects all H_i ∋ 1 ≤ i ≤ r.
- Basically, we reject the hypotheses with the smallest R(X) p-values where R(X) = max{r : p_(r)(X) ≤ Δ(r)}.
- The BH procedure takes $\Delta_{\alpha}(r) = \alpha r/m$.
- For general family of thresholds $\Delta_{\alpha}(r)$ that are non-decreasing in α and r, we denote the generic step-up procedure as $SU_{\Delta}(\alpha)$.
- We denote the corresponding testing procedures as $\mathscr{R}^{BH(\alpha)}$ and $\mathscr{R}^{SU_{\Delta}(\alpha)}$.

Note:

$$FDR = \mathbb{E}\left[\frac{V}{R \lor 1}\right] = \sum_{i \in \mathscr{H}_0} \mathbb{E}\left[\frac{V_i}{R \lor 1}\right]$$

where $V_i = 1\{H_i \text{ is rejected}\}$.

- Benjamini and Hochberg (1995) proved that $BH(\alpha)$ procedure controls FDR at exactly $\alpha m_0/m$ if the p-values are independent and each term of the above sum is controlled at α/m .
- Benjamini and Yekutieli (2001) showed that $BH(\alpha)$ procedure controls FDR conservatively at $\alpha m_0/m$ provided $p_{-1} = (p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_m)$ is *Positive Regression Dependent (PRD)* on p_i , for every $i \in \mathcal{H}_0$: this condition being called *Positive Regression Dependence on a Subset (PRDS)*.

- Benjamini and Yekutieli (2001) also showed that under arbitrary dependence structure of p-values, a much more conservative $BH(\alpha/L_m)$ controls FDR at level α , where $L_m = \sum_{i=1}^m i^{-1} = \log m + \mathcal{O}(1)$. This method is called the Benjamini-Yekutieli (BY) procedure.
- It has also been shown that a general *SU* procedure with $\Delta_{\alpha}(r) = \alpha\beta(r)/m$ where $\beta(r) = \sum_{i=1}^{r} iv(i)$ with *v* being a probability measure on $\{1, \ldots, m\}$, controls FDR conservatively under arbitrary dependence between p-values.
- These methods control FDR under worse-case dependence assumptions, but their generality comes at a price of substantial conservatism and diminished power compared to BH procedure.

Conditional Calibration I

- This paper introduces a method to adaptively calibrate separate rejection threshold for each p-value to control each term of FDR sum, which we call FDR contribution of H_i.
- Let $\tau_i(c; X)$ be rejection threshold for p_i , with *calibration paramater* $c \ge 0$.
- We will aim to calibrate the threshold for p_i, choosing ĉ_i to directly control the ith term of the sum

$$\mathbb{E}_{H_i}\left[\frac{V_i}{R \vee 1}\right] = \sup_{P \in H_i} \mathbb{E}_P\left[\frac{1\{p_i \le \tau_i(\hat{c}_i)\}}{R \vee 1}\right] \le \frac{\alpha}{m}$$

- We try to control a more tractable conditional expectation to free the calculation from nuisance parameters, given some *conditioning statistic S*_{*j*}.
- Only requirement of *S_i*:

$$\sup_{P \in \mathcal{H}_i} \mathbb{P}_P(p_i \leq \alpha | S_i) \leq \alpha \text{ a.s. } \forall \alpha \in [0, 1]$$

• Under independence the super-uniformity condition holds for $S_i = p_{-i}$.

Lemma

Let $p^{(i \leftarrow 0)} = (p_1, \dots, p_{i-1}, 0, p_{i+1}, \dots, p_m)$. If \mathscr{R} is a step-up procedure with threshold sequence $\Delta(1), \dots, \Delta(m)$, then the following are equivalent:

- $p_i \leq \Delta(R(p^{(i \leftarrow 0)})),$
- 2 $i \in \mathcal{R}(p)$,
- - Let R⁰ = R(p^(i←0)), which only depends on p_{-i}. Then for standard BH procedure under independence,

$$\mathbb{E}_{H_i}\left[\frac{V_i}{R \vee 1}|p_{-i}\right] = \mathbb{E}_{H_i}\left[\frac{1\{p_i \leq \alpha R^0/m\}}{R^0}|p_{-i}\right] \leq \frac{1}{R^0}\frac{\alpha R^0}{m} = \frac{\alpha}{m}$$

Marginalizing over p_{-i} and summing over $i \in \mathcal{H}_0$ yields $FDR \le \alpha m_0/m$.

Conditional Calibration III

(a) Independent case: R is constant on the event where p_i is rejected, $\{p_i \le \alpha R/m\}$, as a result of Lemma 1.

(b) Positive-dependent case: R is decreasing in p_i , since the other *p*-values are increasing in p_i .

(c) Worst case: the other p-values are adversarially configured so that R is always just large enough to reject p_i .

- The number of rejections *R* also depend on all *ĉ*₁,...,*ĉ*_m. We substitute an estimatior *R̂_i* ≥ 1 for eventual value of |*ℛ*(*X*) ∪ {*i*}|.
- Note that *R̂_i* should be lower bound for *R*, so that *V_i/R̂_i* is a good upper bound for *V_i/(R*∨1).

• We use \hat{R}_i to estimate $\mathbb{E}_{H_i}[V_i/(R \vee 1)|S_i]$ as a function of the calibration parameter *c*, which we call to be *valid* if:

$$\boldsymbol{g}_{i}^{*}(\boldsymbol{c};\boldsymbol{S}_{i}) = \sup_{\boldsymbol{P}\in \boldsymbol{H}_{i}} \mathbb{E}_{\boldsymbol{P}}\left[\frac{1\{\boldsymbol{p}_{i} \leq \tau_{i}(\boldsymbol{c})\}}{\hat{\boldsymbol{R}}_{i}} | \boldsymbol{S}_{i}\right] \leq \frac{\alpha}{m}$$

- We choose $c_i^*(S_i) = \sup\{c \ge 0; g_i^*(c; S_i) \le \alpha/m\}.$
- g_i^{*}(c; S_i) is non-decreasing and any c < c_i^{*} is valid. However, if g_i^{*} is discontinuous, c_i^{*} itself may not be valid.
- We consider a sequence $\{\hat{c}_{i,t}^*\}_t \ni \hat{c}_{i,t} \uparrow \hat{c}_i^*$ and say the \hat{c}_i^* is *maximal* if $\cup_t [0, \hat{c}_{i,t}]$ includes every valid *c*, almost surely.

We now initialize the rejection set via:

$$\mathscr{R}_+ = \{i : p_i \leq \tau_i(\hat{c}_i)\}$$

- In practice instead of calculating ĉ_i, we use q − values q_i(X) = min{c: p_i ≤ τ_i(c)} since they are easy to calculate for SU procedures.
- For the maximal \hat{c}_i , $i \in \mathscr{R}_+$ iff the observed q_i is a valid calibration parameter, so we alternatively write,

$$\mathscr{R}_+ = \{i : g_i^*(q_i; S_i) \le \alpha/m\}$$

• Let $R_+ = |\mathscr{R}_+|$. If $R_+ \ge \hat{R}_i$, $\forall i \in \mathscr{R}_+$, we set $\mathscr{R} = \mathscr{R}_+$. Otherwise, we prune the rejection set further.

Step 3: Randomized Pruning

- If there is some *i* ∈ *R*₊ for which *R̂_i* > *R*₊, then we must prune the rejection set via a secondary BH procedure.
- For use generated random variables $u_1, \ldots, u_m \stackrel{i.i.d.}{\sim} Unif(0,1)$, let,

$$R(X; u) = \max\{r : |\{i \in \mathscr{R}_+ : u_i \le r/\hat{R}_i\}| \ge r\}$$

and reject H_i for the R indices with $i \in \mathcal{R}_+$ and $u_i \leq R/\hat{R}_i$.

- This procedure is equivalent to BH(1) procedure on "p-value" $\tilde{p}_i = u_i \hat{R}_i / R_+$ for $i \in \mathcal{R}_+$.
- While this pruning step introduces extra randomness, the rejection set includes {*i* : *R̂_i* ≤ *R*(*X*; 1_n)} almost surely.
- We call a calibrated procedure *safe* is pruning is never necessary.

Theorem

Assuming conditional superuniformity of p-values and that \hat{c}_i is chosen to guarantee term-wise FDR control $\forall i$, the three step procedure controls FDR at or below level $\alpha m_0/m$.

The dependence-adjusted BH and BY procedures

- If we use the effective threshold τ_i = τ^{BH} and the estimator Â_i = |ℜ^{BH(γα)} ∪ {i}|, we call the method *dependence-adjusted BH procedure* and denote it using *dBH*(γα).
- If $\gamma = 1/L_m$, we denote it by $dBY(\alpha)$

(a) The dBH₁(α) procedure in the positive-dependent case.

(b) The dBY(α) procedure, which is often much more powerful than BY(α).

$dBH_1(\alpha)$ and $dBY(\alpha)$ procedure

• **Definition:** For given conditioning statistic S_i , we say p_{-i} is *conditionally positive regression dependent (CRPD)* if $\mathbb{P}(p_{-i} \in A | p_i, S_i)$ is a.s. non-decreasing in p_i for any increasing set A. If p_{-i} is CPRD on $p_i \forall i \in \mathcal{H}_0$, we say p-values are CPRD on subset (CPRDS).

Theorem

Assume $\hat{c}_1, \ldots, \hat{c}_m$ are maximal, then:

- If the p-values are independent with p_i uniform under H_i , then $dBH_1(\alpha)$ procedure with $S_i = p_{-i}$ is identical to $BH(\alpha)$ procedure.
- If the p-values are CPRDS ∀ P ∈ 𝒫, then BH₁(α) procedure is safe and uniformly more powerful than the BH(α) procedure.
- For arbitrary dependence, the dBY(α) procedure is safe, and uniformly more powerful than the BY(α) procedure.
- Recall the thresholds Δ_α for generic SU procedure, then for arbitrary dependence, the dSU_Δ(α) procedure is safe, and uniformly more powerful than the SU_Δ(α) procedure.

Identifying conditioning statistic S_i

- To facilitate calibration, *S_i* should eliminate or mitigate the influence of nuisance parameters on the conditional distribution of *X*.
- Calibration is conceptually simplified if S_i is a sufficient statistic for the null submodel H_i , so that conditional distribution of X is known under H_i , in which case we call H_i to be *conditionally simple*. Otherwise, we call it *conditionally composite* and P_i^* is *least favorable* for calibrating \hat{c}_i if it almost surely attains the supremum $g_i^*(c_i; S_i)$.
- Example: For full ranked exponential family,

$$X \sim f_{\theta}(x) = e^{\theta' T(x) - A(\theta)} f_0(x), \ \theta \in \Theta \subset \mathbb{R}^d$$

For $i = 1, ..., m \le d$, H_i takes form $H_i : \theta_i = 0$ or $H_i : \theta \le 0$. The UMPU test rejects H_i when $T_i(X)$ is extreme, conditional on the value of $S_i = T_{-i}$.

 For one sided testing, *H_i* : θ_i ≤ 0 is conditionally composite and it turns our that under some mild condition, θ_i = 0 is least favorable.

Recursive refinement of \hat{R}_i

Performing Steps 1 and 2 our method will make us estimate the rejection rejections once for all the *m* p-values and hence changing $(\hat{R}_1, \ldots, \hat{R}_m)$ will affect the entire procedure and change \mathscr{R} in turn. We however use a better procedure called *recursive refinement* of the estimator.

- Denote the original estimator as $\hat{R}_i^{(1)}$, which leads to original calibration parameter, $\hat{c}_i^{(1)}$ and initial rejection set $\mathscr{R}_+^{(1)}$.
- We define the recursively refined estimator as:

$$\hat{R}_{i}^{(k+1)} = |\mathscr{R}_{+}^{(k)}(x) \cup \{i\}|, \ k > 1$$

If we use effective *BH* threshold with the $dBH_{\gamma}(\alpha)$ estimator, we call the resulting procedure $dBH_{\gamma}^2(\alpha)$ procedure, or $dBY^2(\alpha)$ if $\gamma = 1/L_m$.

Theorem

Assume $\hat{c}_1^{(k)}, \ldots, \hat{c}_m^{(k)}$ are maximal $\forall i, k$. If $\mathscr{R}^{(1)}$ is safe, then for every $k \ge 1$, $\mathscr{R}^{(k+1)}$ is safe and uniformly more powerful than $\mathscr{R}^{(k)}$.

Assume $Z \sim N_d(\mu, \Sigma)$ with $\Sigma \succ 0$ and all $\Sigma_{i,i} = 1$ and we wish to test $H_i : \mu_i = 0$ or $H_i : \mu \le 0$ for $i = 1, ..., m \le d$. p_i are the standard one- or two-sided p-values based on Z_i . Now,

$$f_{\mu}(z) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{\mu' \Sigma^{-1} z - \frac{1}{2} z' \Sigma^{-1} z - \frac{1}{2} \mu' \Sigma^{-1} \mu\right\}$$

It can be shown that taking $S_i = z_{-i} - \sum_{-i,i} \sum_{i,j}^{-1} z_i$, eliminates the influence of μ_{-i} from the problem, leaving a one-parameter exponential family model in μ_i with Z_i as sufficient statistic.

To carry out $dBH_{\gamma}(\alpha)$ procedure, we plug in $c = q_i(Z)$ in

$$\mathbb{E}_0\left[\frac{1\{q_i \leq c\}}{|\mathscr{R}^{BH(\gamma\alpha)} \cup \{i\}|}S_i\right] \leq \frac{\alpha}{m}$$

The expectation is now easy to calculate since given S_i , we simply integrate with respect to $Z_i \sim N(0, 1)$.

In the previous problem, we now assume that $\Sigma = \sigma^2 \Psi$ where $\Psi \succ 0$ is known but $\sigma^2 > 0$ is unknown. WLOG, assume $\Psi_{i,i} = 1$. To estimate σ^2 , we observe another independent vector $W \sim N_{n-d}(0, \sigma^2 I_{n-d})$.

As before, we test $H_i : \mu = 0$ or $H_i : \mu_i \le 0$ for $i = 1, ..., m \le d$, the usual test statistic is _____

$$T_i = rac{Z_i}{\hat{\sigma}}$$
 where $(n-d)\hat{\sigma}^2 = ||W||^2 \sim \sigma^2 \chi^2_{n-d}$

It can be shown that conditioning the resulting (d+1)-parameter exponential family on $S_i = (z_{-i} - \Psi_{-i,i}\Psi_{i,i}^{-1}z_i, \sqrt{||W||^2 + Z_i^2})$ yields a one-parameter exponential family with parameter μ_i/σ^2 .

Therefore, solving the expectation to control the contribution to FDR boils down to a simple integration w.r.t. $T_i \sim t_{n-d}$.

- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)*, 57(1):289–300.
- Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. *The Annals of Statistics*, 29(4):1165 – 1188.
- Fithian, W. and Lei, L. (2022). Conditional calibration for false discovery rate control under dependence. *The Annals of Statistics*, 50(6):3091 3118.